Routes through Calculations

May 2021

Children's chances of maths success are maximised if they develop a deep and lasting understanding of mathematical procedures and concepts. Through Teaching for Mastery, learning is structured with great care to build deep conceptual knowledge alongside developing procedural fluency. The focus is on the development of deep structural knowledge and the ability to make connections.

This Routes through Calculations document provides information on the number facts to be learnt in KS1, the multiplication facts to be learnt in Y2, Y3 and Y 4 , examples of concrete materials used to represent numbers, core representations and the year groups they are used in and how each calculation looks in each year group.

This policy is based on the following ideas

- Children should develop a clear conceptual understanding of arithmetic processes.
- Children should have fluent recall of number facts, including addition facts within 10 , single digit sums and times table facts.
- Children should develop a secure understanding of efficient written algorithms for arithmetic by Year 4.
- Related operations (e.g. addition and subtraction) should be introduced together, with explicit links between them.
- The role of place value in arithmetic processes should be modelled and made clear from the start of Y2.

Fluency in number facts
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}\hline+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 0 & 0+0 & 0+1 & 0+2 & 0+3 & 0+4 & 0+5 & 0+6 & 0+7 & 0+8 & 0+9 & 0+10\end{array}\right]$ Adding 1

The Romero Catholic Academy
Year 1 (Within 10)
Routes through calculations

Adding 1 (e.g. $7+1$ and $1+7$)
Doubles of numbers to 5 (e.g. $4+4$)
Adding 2 (e.g. $4+2$ and $2+4$)
Number bonds to 10 (e.g. $8+2$ and $2+8$)
Adding 10 to a number (e.g. $5+10$ and $10+5$)
Adding 0 to a number (e.g. $3+0$ and $0+3$)
Near doubles (e.g. $3+4$ and $4+3$)
The ones without a family! $5+3,3+5,6+3,3+6$

Year 2 (Bridging 10)

Doubles of numbers to 10 (e.g. 7+7)
Near doubles (e.g. $5+6$ and $6+5$)
Bridging (e.g. $8+4$ and $4+8$)
Compensating

Alongside

Partitioning 2, 3, 4, 5, 6 and 10
\square

Partitioning 7, 8 and 9

Partitioning 11 - 20 into single digit addends

Multiplication and Division Facts

Year 2	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables
Year 3	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
Year 4	recall multiplication and division facts for multiplication tables up to 12×12

We learn the tables in this order:

Representing Numbers with concrete materials

The following concrete materials are used to support the children's understanding of number.

The Romero Catholic Academy
Routes through calculations
Core Representations are used to support children's understand (pictorial)

Representation		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
00000	Tens Frame	Number and place value, addition and subtraction and number fluency	Addition and subtraction	Number and place value and number fluency		Number and place value, number fluency and multiplication and division	Number and place value
	Number Line	Number and place value and number fluency	Number and place value and addition and subtraction	Number and place value and fractions			
	Gettegno Chart	Number and place value and number fluency			Multiplication and division	Number and place value and multiplication and division	Number and place value
	Partitioning diagrams including bar models	Addition and subtraction and number fluency	Number and place value and addition and subtraction	Number and place value, addition and subtraction and fractions	Number and place value, multiplication and division and fractions	Number and place value and fractions	Number and place value, addition and subtraction, multiplication and division and fractions
	Groups of units in addition to ones such as Diennes, PV counters		Number and place value, addition and subtraction and multiplication and division	Addition and subtraction and multiplication and division	Multiplication and division and fractions	Number and place value and multiplication and division	Number and place value

Routes through calculations

Overview

	Reception / Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting onusing cubes. Exchanging to make 10 using ten frame.	Adding three single digits. Column layout - no exchanging.	Column layoutexchanging. Using place value counters (up to 3 digits).	Column layout with exchanging. (up to 4 digits)	Column layout with exchanging. Add decimals with up to two decimal places	Column layoutexchanging. Abstract methods.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Column layout - no exchanging	Column layout with exchanging (up to 3 digits using place value counters)	Column layout with exchanging. (up to 4 digits)	Column layout with exchanging. Subtract decimals with up to two decimal places	Column layout with exchanging. Abstract methods.
Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Column Short multiplication (2 digit number multiplied by 1 digit)	Column short multiplication (2 and 3 digit multiplied by 1 digit)	Column long multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column Long multiplication (multi digit up to 4 digits by a 2-digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Addition		Concrete \& Pictorial Representations
Reception		
Combining two parts		
to make a whole		

Routes through calculations

Addition	Concrete \& Pictorial Representations	Written Recording
Year 1 Starting at the bigger number and counting on	Count on using cubes or Numicon. A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Year 1 Exchanging to make 10	Exchange using ten frames and counters/cubes or using Numicon. $6+5$ Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{array}{\|l} 6+\square=11 \\ 6+5=5+\square \\ 6+5=\square+4 \end{array}$

Routes through calculations

Addition	Concrete \& Pictorial Representations		Written Recording
Year 2 Adding two or three single digits. Column layout - no exchanging.	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$ Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$	$\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$

Addition	Concrete \& Pictorial Representations	Written Recording
Year 3 Column layoutexchanging (up to 3 digits).	Place Value Equipment Model the stages of column addition using place value equipment on a place value grid. (19898)	$\begin{array}{r} \mathrm{H} \text { T O } \\ \hline 1 \begin{array}{l} 2 \\ 6 \end{array} \\ +2 \begin{array}{l} 1 \\ \hline \end{array} \\ \hline 43 \\ \hline \square \end{array}$ $\begin{array}{rrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 1 & 2 & 6 \\ +2 & 1 & 7 \\ \hline 3 & 4 & 3 \\ \hline \end{array}$

Routes through calculations
Addition

Concrete \& Pictorial Representations
Written Recording
Year 4
Column layoutexchanging.
(up to 4 digits)
Place Value Counters on Grids - Thousands, Hundreds, Tens and Units

Compact column addition with larger numbers

©

(-)

Th	H	T	O
1	5	5	4
+4	2	3	7
		9	1

Th	H	T	O		
I	5	5	4		
+4	2	3	7		
5	7	9	1		
			I		

Addition	Concrete \& Pictorial Representations	Written Recording
Year 5 Column layoutexchanging (including decimals)	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \quad 2 \\ +0 \cdot 33 \\ \hline 1 \cdot 25 \\ \hline 1 \end{array}$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline 1 \end{array}$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 40 \\ +0 \cdot 65 \\ \hline \end{array}$

Addition	Concrete \& Pictorial Representations	Written Recording
Year 6 Comparing and selecting efficient methods	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations. Use bar model and number line representations to model addition in problem-solving and measure contexts.	Use column addition where mental methods are not efficient. Recognise common errors with column addition.$32,145+4,302=?$TTh Th H T O 3 2 1 4 5 + 4 3 0 2 3 6 4 4 7TTh Th H T O 3 2 1 4 5 +4 3 0 2 7 5 1 6 5 Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.

Subtraction	Concrete and Pictorial Representations	Written Recording
Reception Subtraction by taking away	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$ Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Q $\otimes O$	$\begin{aligned} & 4-3=\square \\ & \square=4-3 \end{aligned}$4 3 $?$

Routes through calculations

Subtraction	Concrete and Pictorial Representations	Written Recording
Year 1 Find the difference by	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 . Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. 00000000	Find the difference between 8 and 5 . $8-5$, the difference is [] Children to explore why 9-6=8-5=7-4 have the same difference.

Subtraction	Concrete and Pictorial Representations	Written Recording
Year 1 Subtraction within 20	Making 10 using ten frames. 14-5 Children to represent the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend.

The Romero Catholic Academy

Subtraction	Concrete and Pictorial Representations	Written Recording
Year 3 Column layout with exchanging (up to 3 digits)	Place Value Equipment	Formal column layout. Children must understand what has happened when they have crossed out digits. $175-38=137$
Year 4 Column subtraction with exchanging (up to 4 digits).	Place Value Counters on Grids - Thousands, Hundreds, Tens and Units. Children may need to exchange more than once.	Develop compact column subtraction with more than one exchange $\begin{array}{r} 6^{5}, x^{1} x^{1} 8 \\ -\quad 2,7 \quad 8 \quad 9 \\ \hline 3,74 \end{array}$ $\begin{array}{r} 3^{2} x^{6} 3^{1} 2 \\ -\quad 837 \\ \hline 2895 \\ \hline \end{array}$

Year 5

Column
subtraction with exchanging (2place decimals)

Concrete and Pictorial Representations
Use a place value grid to represent the stages of column subtraction, including exchanges where required.
$5 \cdot 74-2 \cdot 25=$?

$$
\begin{array}{r}
0 \cdot \text { Tth } \mathrm{Hth} \\
\hline 5 \cdot 744 \\
-2 \cdot 2 \quad 5 \\
\hline
\end{array}
$$

Exchange I tenth for 10 hundredths.

$\frac{0 \cdot \text { Tth Hth }}{5 \cdot{ }^{6} 7^{1} 4}$
$\begin{array}{r}2 \cdot 25 \\ \hline\end{array}$
Now subtract the 5 hundredths.

$$
\begin{array}{r}
0 \cdot \text { Tth Hth } \\
\hline 5 \cdot{ }^{6} \boldsymbol{y} \\
\hline
\end{array}{ }^{\prime} 4
$$

Now subtract the 2 tenths, then the 2 ones.

Written Recording
Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.

$$
3.921-3.75=?
$$

$$
\begin{aligned}
& 0 \cdot \text { Tth Hth Thth } \\
& \hline 3 \cdot 9 \quad 2 \quad 1
\end{aligned}
$$

$$
\begin{array}{r}
3 \cdot 7 \quad 5 \quad 0 \\
\hline
\end{array}
$$

Subtraction	Concrete and Pictorial Representations	Written Recording
Year 6 Comparing and selecting efficient methods	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.

The Romero Catholic Academy

Routes through calculations

The Romero Catholic Academy
Routes through calculations

Multiplication	Concrete and Pictorial Representations	Written Recording
Year 2 Arrays- showing commutative multiplication	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2 Children to represent the arrays pictorially. $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$ 00	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Routes through calculations
Multiplication
Concrete and Pictorial Representations
Written Recording

The Romero Catholic Academy
Routes through calculations

The Romero Catholic Academy
Year 5
Multiplying up to 4-digits by 2-
digits digits

Routes through calculations

$143 \times 12=1,716$
There are 1,716 boxes of cereal in total.

$143 \times 12=1,716$

Use column multiplication, ensuring understanding of place value at each stage.

Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.

```
1,274 \times 32 = ?
```

First multiply 1,274 by 2.

Then multiply 1,274 by 30.

1274			
\times	3		
	2	5,4	8
$1,274 \times 2$			
3	8	2,2	0

Finally, find the total.

The Romero Catholic Academy
Routes through calculations

Division	Concrete and Pictorial Representations	Written Recording
Year 2 Division as sharing Repeated addition	Sharing into equal groups : e.g. 20 divided by 4 is 20 shared equally into 4 parts Grouping and counting e.g. 18 divided by 3 is 18 split into equal groups of 3	Abstract number line to represent the equal groups that have been added.
Year 2 Division within arrayslinking to multiplication	Recognise the links between multiplication and division through use of arrays: $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \\ & 12 \div 4=3 \\ & 12 \div 3=4 \end{aligned}$	

Division	Concrete and Pictorial Representations	Written Recording
Year 3 Division with a remainder	$2 d \div 1 d$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of Iollipop sticks to form wholes- squares are made because we are dividing by 4 . There are 3 whole squares, with 1 left over. Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over. Use place value equipment to understand the concept of remainder in division. $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$	65 divided by 3 equals 21 remainder 2 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. ' 21 groups of 3 , with 2 left over' $65 \div 3=$ Partition to divide, understanding the remainder in context. 67 children try to make 5 equal lines. $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$ There are 13 children in each line and 2 children left out.

The Romero Catholic Academy
Routes through calculations

Year 4 Short division (up to 3 digits by 1 digitconcrete and pictorial)	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 . $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. $72 \div 2=36$ $72 \div 3=24$ $72 \div 4=18$ $72 \div 6=12$ Understand that different partitions can be used to complete the same division.

The Romero Catholic Academy
Division

Routes through calculations

Division	Concrete and Pictorial Representations	Written Recording
Year 5 Short division (up to 4 digits by a 1 digit number including remainders)	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\left.\begin{array}{l} 0 \\ 0 \end{array} 5 \begin{array}{rrr} 6 & 6 \\ 7 & 3^{3} 8{ }^{3} q & 4 \\ 4 \end{array}\right)$ Use multiplication to check. $556 \times 7=?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

The Romero Catholic Academy
Routes through calculations

'Becky has 434 cm of ribbon to wrap up prizes for a school competition. Each prize needs 31 cm of ribbon. How many prizes can she wrap?'
$434 \div 31=$?

Ratio chart:		Step 1 - write the divisor, frame and dividend$3 1 \longdiv { 4 3 4 }$
	$\times 31$	
	31	
	62	
	124	
	155	
	248	
	310	
Step 2 - divide the hundreds $\begin{gathered} 0 \\ 3 1 \longdiv { 4 \quad 3 \quad 4 } \end{gathered}$ 4 hundreds $\div 31=0$ hundreds $r 4$ hundreds - 'Write " 0 " in the hundreds column of the answer line.'		Step 3 - exchange hundreds for tens, combine with the existing tens and divide... $\begin{array}{rrr} 0 & 1 \\ 3 1 \longdiv { 4 } & 3 & 4 \end{array} \quad(1 \text { ten } \times 31=31 \text { tens })$ 4 hundreds $=40$ tens 40 tens +3 tens $=43$ tens 43 tens $\div 31=1$ ten and a remainder - 'Write " 1 " in the tens column of the answer line and write " 31 " underneath the " 43 ".'

Concrete and Pictorial Representations

Step 4 - subtract to find the remainder	Step 5 - exchange tens for ones and combine with the existing ones $\begin{aligned} & \begin{array}{lll} \begin{array}{l} 0 \\ 31 \\ 4 \end{array} & 3 & 4 \\ \begin{array}{l} 3 \end{array} & 1 & \downarrow \end{array} \quad(1 \text { ten } \times 31=31 \text { tens }) \\ & \begin{array}{l} 1 \\ 2 \end{array} \\ & 12 \text { tens }=120 \text { ones } \\ & 120 \text { ones }+4 \text { ones }=124 \text { ones } \\ & \text { 'Write " } 4 \text { " after the " } 12 \text { ".'. } \end{aligned}$
Step 6-divide the ones 124 ones $\div 31=4$ ones (refer to the ratio chart) - 'Write " 4 " in the ones column of the answer line and write "124" underneath the "124", aligning the digits.'	Step 7 - subtract to show there is no remainder 124 ones -124 ones $=0$ ones - 'Write " 0 " underneath the " 31 ".'

[^0]
[^0]: - 'Becky can wrap fourteen presents.'

